小孩肠胃炎吃什么药| 小孩口腔溃疡是什么原因引起的| 维生素e有什么功效| vj是什么意思| 婴儿拉奶瓣是什么原因| 为什么油耳朵就有狐臭| 腺样体增生是什么意思| 脚踩棉花感见于什么病| 香油是什么| 维生素d3是什么| 肚脐眼下方是什么器官| 一路顺风是什么生肖| 西多士是什么| 道听途说是什么意思| 夜间睡觉出汗是什么原因| 唾液臭是什么原因| 逍遥丸主治什么病| 荨麻疹擦什么药膏| d代表什么| 脱线是什么意思| 血象是指什么| 希特勒为什么杀犹太人| 黄晓明的老婆叫什么名字| 如意代表什么数字| 手足口吃什么药| 当归长什么样的图片| 吃什么祛痰化痰最有效| babies是什么意思| 什么人不能吃洋葱| 土鳖是什么意思| 尿道感染要吃什么药| 胸口疼痛是什么原因| fe是什么元素| 外包什么意思| 4.9是什么星座| 睡醒口干舌燥是什么原因| 早射吃什么药最好| 尿酸高吃什么可以降下去| 北洋军阀是什么意思| 心脏有问题挂什么科| 端午节吃什么食物| 复印病历需要什么证件| 支气管挂什么科| ivd是什么意思| 8五行属什么| 闪光感是什么感觉| 花椒和麻椒有什么区别| 什么是什么意思| 甲状腺1度肿大是什么意思| 为什么会有白头发| 痔疮是什么感觉| 拉稀水是什么原因| 茎是什么意思| 梦见一条小蛇是什么意思| 小孩子流鼻血是什么原因| 熊猫尾巴什么颜色| 胃饱胀是什么原因| 腰肌劳损挂什么科| 黄芪什么人不能吃| 前列腺钙化有什么症状| 玄牝是什么意思| 指甲软是什么原因| 摔跤擦伤破皮擦什么药| 红黑相间的蛇是什么蛇| 夏天有什么特点| 扁平足是什么样子图片| 神经酸是什么| 紫米和小米什么关系| 柳絮吃了有什么好处| 扁桃体发炎不能吃什么东西| 螃蟹爱吃什么| 燊读什么| 结石有什么症状| 什么是造影手术| 经期吃榴莲有什么好处和坏处| 吃丝瓜有什么好处| 三刀六洞什么意思| 导盲犬一般是什么品种| 女人梦到蝎子什么征兆| 益生菌的食物是什么| 梅毒螺旋体抗体阴性是什么意思| 花红是什么意思| 才高八斗是什么生肖| 飞龙是什么| 83年五行属什么| 7月24日是什么星座| 肾积水是什么原因引起的| 什么情况属于骗婚| pc是什么| guess什么牌子| 约法三章什么意思| 生姜什么时候吃最好| 以身相许什么意思| 四肢百骸是什么意思| 犀利的眼神是什么意思| 治阴虱去药店买什么药| 肠易激综合征是什么病| 梦见好多衣服是什么意思| 膜拜是什么意思| 霸屏是什么意思| 过敏性鼻炎吃什么食物好| 什么是气溶胶| 在此是什么意思| 鼻甲肥大吃什么药最好| 什么不生四字成语| 什么察秋毫| 直肠指检能检查出什么| 吃洋葱对身体有什么好处| 非议是什么意思| 孩子急性肠胃炎吃什么药| 曼巴是什么意思| 6月18号是什么日子| 今年什么时候起伏| 违反禁令标志指示什么意思| 吃什么养颜美容抗衰老| 油性皮肤适合用什么护肤品| 摧枯拉朽是什么意思| 梅花是什么颜色的| 17088a是什么尺码男装| cv是什么| 艾斯比什么意思| 五月初六是什么星座| 干咳无痰吃什么药效果最好| 7月17号是什么星座| 机械键盘什么轴最好| m是什么意思| 珍珠米是什么米| 脚心疼痛是什么原因引起的| 梦见狼是什么意思| 北京为什么叫四九城| 女人出黄汗是什么原因| mds是什么| 鱼刺卡喉咙挂什么科| 仰卧起坐是什么现象| 巨蟹座幸运花是什么| 扁桃体结石是什么原因引起的| 白衣天使是什么意思| 腺肌症不治疗会导致什么结果| 护照和签证有什么区别| 代谢不好吃什么药| 农历六月十四是什么星座| 调经吃什么药效果最好| 龄字五行属什么| 商字五行属什么| 黄体是什么意思| 少阳证是什么意思| hbsag阳性什么意思| 胃胀气吃什么| 丑未相冲的结果是什么| 俄罗斯信奉的是什么教| 劈腿是什么意思| 71年什么时候退休| 谷维素是什么| 什么还珠| 人体缺钾会有什么症状| 月牙代表什么意思| 百年老枞属于什么茶| 90年属马的是什么命| 尿液是什么味道| 什么星座最花心| 茭白是什么植物| 宫颈病变是什么意思| 婊子代表什么生肖| 鸡犬不宁是什么生肖| brown什么意思| 孕妇钙片什么时间段吃最好| 一个大一个小念什么| 杏林春暖的杏林指什么| 什么是紫外线| 秦朝之前是什么朝代| 正常尿液是什么颜色| 双角子宫是什么意思| 马蜂长什么样| 惨绿少年什么意思| 俄罗斯的国花是什么花| 儿童感冒挂什么科| 梦见死人是什么| 三更是什么生肖| 例假少吃什么能让量多| 孙思邈发明了什么| 脸上痒是什么原因| 乳腺增生1类什么意思| 32年婚姻是什么婚| 墨菲定律是什么意思| 瑞字属于五行属什么| 女性后背疼挂什么科室| 学护理需要什么条件| 湖蓝色配什么颜色好看| 5.22是什么星座| 全麦面包是什么意思| 122是什么号码| 膈是什么器官| 小肚子疼是什么原因引起的| 辣椒什么时候传入中国| 2月8日什么星座| 貔貅什么人不能戴| 嘴角边长痘痘是什么原因| 3月什么星座| 什么是包茎| 肝火郁结是什么症状| 补脑吃什么| 僧侣是什么意思| 流注是什么意思| 水泡用什么药膏最有效| 胎位 头位是什么意思| 包皮瘙痒用什么药| 34岁属什么的生肖| 尾牙是什么意思| 柱镜度数是什么意思| 胃不好早餐吃什么好| 腊肠和什么菜炒最佳| 孕妇吃什么是补铁的| 己未日五行属什么| 失眠什么意思| 三个水读什么| 湿疹擦什么药膏好| 为什么会得荨麻疹呢| 狗咬到什么程度需要打针| 血铅是什么| 血小板压积偏低是什么意思| 跨宽穿什么裤子好看| 号外是什么意思| 吃芒果后不能吃什么| 扳机是什么意思| 很难怀孕是什么原因| si是什么元素| 总是耳鸣是什么原因| 子宫肌瘤术后吃什么好| 野兔子吃什么| 梦见花开是什么预兆| 一月十八号是什么星座| 晚上夜尿多吃什么药| 吃什么增肥| 欲望是什么意思| 12度穿什么衣服| 较重闭合性跌打损伤是什么意思| 甲状腺球蛋白低说明什么| 什么情况会胎停| 衣禄是什么意思| 胆囊炎有什么症状| 错觉是什么意思| 细菌性感染吃什么药| 碳酸钠为什么显碱性| 85年属牛是什么命| 胃溃疡a1期是什么意思| 或缺是什么意思| 吃夏枯草有什么副作用| 二郎神是什么生肖| 阑尾炎吃什么药见效快| 脚气吃什么药| andy是什么意思| 转氨酶高是什么意思| 腿上起水泡是什么原因| 部队班长是什么军衔| 什么运动最减肥| 神经损伤是什么症状| 什么茶叶能减肥刮油脂肪| 甲亢病吃什么药效果好| 鼻子红是什么原因| 淘米水洗脸有什么好处| 青少年嗜睡是什么原因| 中秋节送礼送什么| 小便有泡沫是什么原因| 低血糖吃什么食物| 百度Jump to content

外媒看两会:金融深化改革 中国经济锁定高质量发展

Page semi-protected
From Wikipedia, the free encyclopedia
百度 针对小鸣单车拖欠消费者押金、资金账户管理不规范等问题,去年年底,广东省消费者委员会向广州市中级人民法院提起消费民事公益诉讼。

The two triangles on the left are congruent. The third is similar to them. The last triangle is neither congruent nor similar to any of the others. Congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distances and angles. The unchanged properties are called invariants.

In geometry, two figures or objects are congruent if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.[1]

More formally, two sets of points are called congruent if, and only if, one can be transformed into the other by an isometry, i.e., a combination of rigid motions, namely a translation, a rotation, and a reflection. This means that either object can be repositioned and reflected (but not resized) so as to coincide precisely with the other object. Therefore, two distinct plane figures on a piece of paper are congruent if they can be cut out and then matched up completely. Turning the paper over is permitted.

This diagram illustrates the geometric principle of angle-angle-side triangle congruence: given triangle ABC and triangle A'B'C', triangle ABC is congruent with triangle A'B'C' if and only if: angle CAB is congruent with angle C'A'B', and angle ABC is congruent with angle A'B'C', and BC is congruent with B'C'. Note hatch marks are used here to show angle and side equalities.

In elementary geometry the word congruent is often used as follows.[2] The word equal is often used in place of congruent for these objects.

  • Two line segments are congruent if they have the same length.
  • Two angles are congruent if they have the same measure.
  • Two circles are congruent if they have the same diameter.

In this sense, the sentence "two plane figures are congruent" implies that their corresponding characteristics are congruent (or equal) including not just their corresponding sides and angles, but also their corresponding diagonals, perimeters, and areas.

The related concept of similarity applies if the objects have the same shape but do not necessarily have the same size. (Most definitions consider congruence to be a form of similarity, although a minority require that the objects have different sizes in order to qualify as similar.)

Determining congruence of polygons

The orange and green quadrilaterals are congruent; the blue is not congruent to them. All three have the same perimeter and area. (The ordering of the sides of the blue quadrilateral is "mixed" which results in two of the interior angles and one of the diagonals not being congruent.)

For two polygons to be congruent, they must have an equal number of sides (and hence an equal number—the same number—of vertices). Two polygons with n sides are congruent if and only if they each have numerically identical sequences (even if clockwise for one polygon and counterclockwise for the other) side-angle-side-angle-... for n sides and n angles.

Congruence of polygons can be established graphically as follows:

  • First, match and label the corresponding vertices of the two figures.
  • Second, draw a vector from one of the vertices of one of the figures to the corresponding vertex of the other figure. Translate the first figure by this vector so that these two vertices match.
  • Third, rotate the translated figure about the matched vertex until one pair of corresponding sides matches.
  • Fourth, reflect the rotated figure about this matched side until the figures match.

If at any time the step cannot be completed, the polygons are not congruent.

Congruence of triangles

Two triangles are congruent if their corresponding sides are equal in length, and their corresponding angles are equal in measure.

Symbolically, we write the congruency and incongruency of two triangles ABC and A′B′C′ as follows:

In many cases it is sufficient to establish the equality of three corresponding parts and use one of the following results to deduce the congruence of the two triangles.

Determining congruence

The shape of a triangle is determined up to congruence by specifying two sides and the angle between them (SAS), two angles and the side between them (ASA) or two angles and a corresponding adjacent side (AAS). Specifying two sides and an adjacent angle (SSA), however, can yield two distinct possible triangles.

Sufficient evidence for congruence between two triangles in Euclidean space can be shown through the following comparisons:

  • SAS (side-angle-side): If two pairs of sides of two triangles are equal in length, and the included angles are equal in measurement, then the triangles are congruent.
  • SSS (side-side-side): If three pairs of sides of two triangles are equal in length, then the triangles are congruent.
  • ASA (angle-side-angle): If two pairs of angles of two triangles are equal in measurement, and the included sides are equal in length, then the triangles are congruent.

The ASA postulate is attributed to Thales of Miletus. In most systems of axioms, the three criteria – SAS, SSS and ASA – are established as theorems. In the School Mathematics Study Group system SAS is taken as one (#15) of 22 postulates.

  • AAS (angle-angle-side): If two pairs of angles of two triangles are equal in measurement, and a pair of corresponding non-included sides are equal in length, then the triangles are congruent. AAS is equivalent to an ASA condition, by the fact that if any two angles are given, so is the third angle, since their sum should be 180°. ASA and AAS are sometimes combined into a single condition, AAcorrS – any two angles and a corresponding side.[3]
  • RHS (right-angle-hypotenuse-side), also known as HL (hypotenuse-leg): If two right-angled triangles have their hypotenuses equal in length, and a pair of other sides are equal in length, then the triangles are congruent.

Side-side-angle

The SSA condition (side-side-angle) which specifies two sides and a non-included angle (also known as ASS, or angle-side-side) does not by itself prove congruence. In order to show congruence, additional information is required such as the measure of the corresponding angles and in some cases the lengths of the two pairs of corresponding sides. There are a few possible cases:

If two triangles satisfy the SSA condition and the length of the side opposite the angle is greater than or equal to the length of the adjacent side (SSA, or long side-short side-angle), then the two triangles are congruent. The opposite side is sometimes longer when the corresponding angles are acute, but it is always longer when the corresponding angles are right or obtuse. Where the angle is a right angle, also known as the hypotenuse-leg (HL) postulate or the right-angle-hypotenuse-side (RHS) condition, the third side can be calculated using the Pythagorean theorem thus allowing the SSS postulate to be applied.

If two triangles satisfy the SSA condition and the corresponding angles are acute and the length of the side opposite the angle is equal to the length of the adjacent side multiplied by the sine of the angle, then the two triangles are congruent.

If two triangles satisfy the SSA condition and the corresponding angles are acute and the length of the side opposite the angle is greater than the length of the adjacent side multiplied by the sine of the angle (but less than the length of the adjacent side), then the two triangles cannot be shown to be congruent. This is the ambiguous case and two different triangles can be formed from the given information, but further information distinguishing them can lead to a proof of congruence.

Angle-angle-angle

In Euclidean geometry, AAA (angle-angle-angle) (or just AA, since in Euclidean geometry the angles of a triangle add up to 180°) does not provide information regarding the size of the two triangles and hence proves only similarity and not congruence in Euclidean space.

However, in spherical geometry and hyperbolic geometry (where the sum of the angles of a triangle varies with size) AAA is sufficient for congruence on a given curvature of surface.[4]

CPCTC

This acronym stands for Corresponding Parts of Congruent Triangles are Congruent, which is an abbreviated version of the definition of congruent triangles.[5][6]

In more detail, it is a succinct way to say that if triangles ABC and DEF are congruent, that is,

with corresponding pairs of angles at vertices A and D; B and E; and C and F, and with corresponding pairs of sides AB and DE; BC and EF; and CA and FD, then the following statements are true:

The statement is often used as a justification in elementary geometry proofs when a conclusion of the congruence of parts of two triangles is needed after the congruence of the triangles has been established. For example, if two triangles have been shown to be congruent by the SSS criteria and a statement that corresponding angles are congruent is needed in a proof, then CPCTC may be used as a justification of this statement.

A related theorem is CPCFC, in which "triangles" is replaced with "figures" so that the theorem applies to any pair of polygons or polyhedrons that are congruent.

Definition of congruence in analytic geometry

In a Euclidean system, congruence is fundamental; it is the counterpart of equality for numbers. In analytic geometry, congruence may be defined intuitively thus: two mappings of figures onto one Cartesian coordinate system are congruent if and only if, for any two points in the first mapping, the Euclidean distance between them is equal to the Euclidean distance between the corresponding points in the second mapping.

A more formal definition states that two subsets A and B of Euclidean space Rn are called congruent if there exists an isometry f : RnRn (an element of the Euclidean group E(n)) with f(A) = B. Congruence is an equivalence relation.

Congruent conic sections

Two conic sections are congruent if their eccentricities and one other distinct parameter characterizing them are equal. Their eccentricities establish their shapes, equality of which is sufficient to establish similarity, and the second parameter then establishes size. Since two circles, parabolas, or rectangular hyperbolas always have the same eccentricity (specifically 0 in the case of circles, 1 in the case of parabolas, and in the case of rectangular hyperbolas), two circles, parabolas, or rectangular hyperbolas need to have only one other common parameter value, establishing their size, for them to be congruent.

Congruent polyhedra

For two polyhedra with the same combinatorial type (that is, the same number E of edges, the same number of faces, and the same number of sides on corresponding faces), there exists a set of E measurements that can establish whether or not the polyhedra are congruent.[7][8] The number is tight, meaning that less than E measurements are not enough if the polyhedra are generic among their combinatorial type. But less measurements can work for special cases. For example, cubes have 12 edges, but 9 measurements are enough to decide if a polyhedron of that combinatorial type is congruent to a given regular cube.

Congruent triangles on a sphere

As with plane triangles, on a sphere two triangles sharing the same sequence of angle-side-angle (ASA) are necessarily congruent (that is, they have three identical sides and three identical angles).[9] This can be seen as follows: One can situate one of the vertices with a given angle at the south pole and run the side with given length up the prime meridian. Knowing both angles at either end of the segment of fixed length ensures that the other two sides emanate with a uniquely determined trajectory, and thus will meet each other at a uniquely determined point; thus ASA is valid.

The congruence theorems side-angle-side (SAS) and side-side-side (SSS) also hold on a sphere; in addition, if two spherical triangles have an identical angle-angle-angle (AAA) sequence, they are congruent (unlike for plane triangles).[9]

The plane-triangle congruence theorem angle-angle-side (AAS) does not hold for spherical triangles.[10] As in plane geometry, side-side-angle (SSA) does not imply congruence.

Notation

A symbol commonly used for congruence is an equals symbol with a tilde above it, ?, corresponding to the Unicode character 'approximately equal to' (U+2245). In the UK, the three-bar equal sign (U+2261) is sometimes used.

See also

References

  1. ^ Clapham, C.; Nicholson, J. (2009). "Oxford Concise Dictionary of Mathematics, Congruent Figures" (PDF). Addison-Wesley. p. 167. Archived from the original on 29 October 2013. Retrieved 2 June 2017.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  2. ^ "Congruence". Math Open Reference. 2009. Retrieved 2 June 2017.
  3. ^ Parr, H. E. (1970). Revision Course in School mathematics. Mathematics Textbooks Second Edition. G Bell and Sons Ltd. ISBN 0-7135-1717-4.
  4. ^ Cornel, Antonio (2002). Geometry for Secondary Schools. Mathematics Textbooks Second Edition. Bookmark Inc. ISBN 971-569-441-1.
  5. ^ Jacobs, Harold R. (1974), Geometry, W.H. Freeman, p. 160, ISBN 0-7167-0456-0 Jacobs uses a slight variation of the phrase
  6. ^ "Congruent Triangles". Cliff's Notes. Retrieved 2025-08-07.
  7. ^ Borisov, Alexander; Dickinson, Mark; Hastings, Stuart (March 2010). "A Congruence Problem for Polyhedra". American Mathematical Monthly. 117 (3): 232–249. arXiv:0811.4197. doi:10.4169/000298910X480081. S2CID 8166476.
  8. ^ Creech, Alexa. "A Congruence Problem" (PDF). Archived from the original (PDF) on November 11, 2013.
  9. ^ a b Bolin, Michael (September 9, 2003). "Exploration of Spherical Geometry" (PDF). pp. 6–7. Archived (PDF) from the original on 2025-08-07.
  10. ^ Hollyer, L. "Slide 89 of 112".
人为什么会得白血病 蒙脱石散什么时候吃 全身疼痛是什么原因 什么名字好听 kalenji是什么品牌
朱的部首是什么 内心os是什么意思 轻度肠上皮化生是什么意思 补位是什么意思 宝宝为什么吐奶
山竹树长什么样子图片 早年晚岁总无长是什么意思 halloween是什么意思 两侧肋骨疼是什么原因 醋酸菌是什么菌
眼花视力模糊是什么原因引起的 爷爷和孙子是什么关系 脂肪的克星是什么 什么食物防辐射 梦见前男友是什么意思
射精出血是什么原因hcv9jop7ns4r.cn 间质性肺炎是什么意思hcv8jop5ns4r.cn 毕婚族是什么意思hcv8jop0ns6r.cn 突破性出血是什么意思bysq.com 97年属什么今年多大hcv8jop5ns3r.cn
吃什么囊肿会消失hcv9jop3ns6r.cn 对偶是什么意思hcv8jop7ns3r.cn 例假颜色发黑是什么原因wuhaiwuya.com 手肘黑是什么原因hcv9jop0ns8r.cn 口腔苦味是什么原因hcv9jop1ns3r.cn
会车是什么意思hcv9jop0ns1r.cn 输卵管堵塞是什么原因造成的hcv8jop5ns5r.cn 心花怒放是什么意思hcv9jop0ns2r.cn 孩子头晕挂什么科hcv8jop6ns3r.cn 肠胃不好吃什么药效果好bjcbxg.com
人参果总皂苷是什么hcv8jop9ns8r.cn 爵是什么器皿hcv8jop8ns4r.cn 1954年属什么hcv9jop6ns9r.cn 心脏跳的慢吃什么好hcv8jop7ns4r.cn 司令是什么意思hanqikai.com
百度